
Construction Spaces for the Design of Learning Tasks in Virtual Worlds
Dennis Maciuszek, Alke Martens
University of Rostock, Germany
dennis.maciuszek@storyautor.de
alke.martens@uni-rostock.de

Abstract: How should we design and select tasks in educational virtual worlds so that students are
encouraged to experiment, without getting lost in the vast possibilities of a constructivist environment?
We present a scenario in which students learn about artificial intelligence by programming the
behaviour of game characters in Second Life. In two pre-studies, two factors seemed to support
learning: appropriate task difficulty and appropriate degree of instruction versus construction at the
right time. Intelligent Tutoring Systems can choose appropriately difficult tasks automatically, based
on models. Building on this, we propose a two-dimensional model for open-ended microworlds that
additionally considers the degree of instructional guidance versus self-regulated construction. After
the completion of a task, the teacher assigns either a more complex task, or the same task, but with
more interactive freedom. In our main study, school students created autonomous virtual robots by
connecting modules, reading and writing code. Using an exercise pool in accordance with our model,
we recorded chosen learning paths and perceived difficulty to see whether our adaptation worked. To
assess what was learnt, we analysed constructed mental models. The paper presents and discusses
the results.

Keywords: virtual world, constructivism, mental model, instructional design, cognitive apprenticeship

1. Introduction
Today, virtual worlds like Second Life or 3D engines like Unity are easily accessible. They come with
powerful physics engines and scripting languages for realising highly interactive simulations. These
enable instructional designers to create learning environments based on constructivist teaching
ideals. Constructivist theories emphasise the individual learner’s role in transforming information to
knowledge. Learners construct their own version of the truth, or find their own paths towards it.
Constructivist teaching seeks to create authentic, complex situations in which learners’ experiences
inspire own explanations. Knowledge is born by anchoring new information in personal experience.
Constructivist educational settings should therefore provide students with freedom to express
themselves and establish their own personal constructs of a domain (for a more detailed introduction
to constructivism, see Martens and Maciuszek 2013). In science and engineering domains,
constructivist teaching is often called inquiry learning or discovery learning (e.g. de Jong and van
Joolingen 1998).
A virtual world can immerse students in interactive simulations of domain activities and create the
illusion of ‘being there’. Different from real-life settings, making mistakes is possible – even desirable
– without causing accidents. Through trial and error, students can form and validate hypotheses,
construct mental models, and ideally gain a deep understanding of the topic. If done well, the activity
enables them to transfer constructed knowledge to similar real-world situations.
However, as de Jong and van Joolingen (1998) point out by discussing various studies, discovery
learning with interactive simulations is difficult. It will not succeed in a truly free environment without
any instructional guidance. This problem was formulated already before 3D virtual worlds became
attractive for educational game designers, but it remains until today. First of all, a simulated
environment in itself is not enough. The designer needs to fill it with appropriate activities and tasks
for attaining the learning goals. Second, students are required to employ advanced self-regulation
skills to master potentially complex scenarios while not getting distracted or even lost in the many
possibilities of an open-ended immersive environment.
This is a core problem for any design of interactive media: how much control should the designer
apply, how much freedom should the user have? How much instruction versus how much
construction? We have previously presented a literature review on this dilemma (Martens and
Maciuszek 2013). For instance, researchers have been studying virtual “microworlds” – interactive
simulations driven by a set of internal laws – since before the time of advanced graphical interfaces
(starting with Papert 1980). Rieber (1992) suggested helping the learner by reducing the complexity of
simulations to the variables needed and by structuring learning in the form of missions. In game
design, the instruction-construction dualism boils down to the choice of genre. Adventure games build
on scripted narratives (instruction), while simulation games hope that meaningful experiences will
emerge from the interaction (construction; e.g. Sweetser 2005). Role-playing games (RPGs) are a
compromise. They embed scripted quests (missions) in worlds of simulated activities. A quest is

mailto:alke.martens@uni-rostock.de
mailto:dennis.maciuszek@storyautor.de

basically a mini-adventure game. Adventures use only a few RPG-like activities – crafting (using items
on items or the environment) and single-choice conversations – as puzzles to advance a scripted plot.
Section 2 introduces a crafting scenario as it could appear in an educational RPG. Section 3 develops
a model for addressing instruction versus construction in such scenarios. Section 4 reports on an
evaluation of the approach in the classroom. Section 5 concludes.

2. Study case
Five years ago, we wanted to try something new in our Applied Artificial Intelligence courses for
Computer Science students at the University of Rostock. To give the students a hands-on experience
of artificial intelligence (AI), we created a virtual factory environment in Second Life (SL). In addition to
the lectures, the students carried out exercises in which they programmed the behaviour of game
characters in the Linden Scripting Language (LSL). The first half of the course consisted of prepared
tasks in which our ten students (in teams of two) were asked to implement a range of AI algorithms.
The second half was less instructional. Each team contributed a level to an action adventure game
(within SL) that employed an AI strategy chosen and designed by the students. It had to realise the
behaviour of an opponent in the game. During the course, we found that LSL and the physics engine
were so difficult to handle that they got in the way of completing the prepared AI tasks. In the
individual projects, however, the students obtained remarkable results. One group implemented a
surveillance system in their factory hall that had a robot swarm pursue the player’s avatar by graph-
based planning. Students implemented advanced AI techniques, yet they could not always name
them. A constructivist approach (second half) worked in this environment, but only after the students
had acquired some experience. For a detailed presentation of this pre-study see Maciuszek et al.
(2013).
Inspired by those first experiences in a University setting, we adapted the AI course so that it fits into
a secondary-school Computer Science curriculum. We narrowed down the domain to basic
autonomous steering (Reynolds 1999) like pursuit of a user’s avatar or fleeing from it. In a pre-study
with two participants (both male, aged 15 and 17) in a collaborative distance-learning arrangement,
we started out with very basic discovery learning tasks. Students observed artificially intelligent game
characters and had to explain their behaviour. Following a Cognitive Apprenticeship approach
(Collins, Brown and Newman 1987), the teacher (first author) slowly faded the degree of instructional
guidance and encouraged a higher degree of experimentation, e.g. interpreting code. We had
redesigned the virtual factory from the first pre-study to obtain a more precisely defined microworld
that better resembled a crafting environment in an RPG or adventure game. It was now a robot factory
that supplied a pool of different robot eyes (sensors), heads (algorithms), and feet (actuators). The
parts communicate with each other through programming interfaces to realise robot behaviour. A
typical task would be to combine three parts into a robot that perceives an avatar within a certain
angle and range, then follows it with a certain speed. Additional guidance existed in the form of
assembly instructions on virtual posters on the factory walls. These were actually sketches of vector
algebra and formulas for the steering algorithms: Figure 1.

Figure 1: Virtual factory with connectable robot parts (right: eyes, left: robot) and instructional posters

To provide a reflection tool, we asked the students to keep an online learning journal. They wrote
down interpretations, assembly instructions in their own words, and ideas that came up after each of
the four 90-minute sessions. To us, the produced texts provide insight into the students’ constructed
mental models. While the older student wrote exact and comprehensive descriptions of the algorithms
and in the last session came up with ideas about simulating cellular networks and swarm intelligence,
the younger student was thinking more practically about what could be done in the programming
environment. Already after the second session, the older student displayed critical thinking when he
expressed, mathematically, why a fleeing robot should not be allowed to turn around: because it
cannot see the pursuing avatar anymore. This issue was not planned to be discussed, but we adapted
to the student’s interest and in the following session worked together on a solution for this. The
younger student surprised us with an invention he had made after the third session (a transfer
achievement). After having learnt about forces in the physics engine, he had designed and
programmed a rocket that counters gravity: Figure 2.

Figure 2: Invention presented in the final session: a rocket lifting off

All in all, the students mastered the comparatively easy tasks quicker than our instructions were
supposed to fade. They became creative pretty early. We encouraged this, although it sometimes
meant digressing from the learning goals. Programming a rocket is a physics, not an AI problem.
Looking back at both, the University course and the distance-learning pre-study with the two school
students, we could observe that a virtual world environment is capable of inspiring creativity. Two
factors seemed to support learning: the appropriate difficulty of a task and the appropriate degree of
instruction versus construction at the right time for an individual or team. It is up to the teacher (or an
intelligent mechanism in the software) to regulate this. If such adaptation shall not just happen
intuitively, then we need a model for structuring learning tasks in virtual worlds. Finding such a model
for the case of crafting in virtual factories is the objective of the following section. The robot factory
remains the concrete study case.

3. Design approach
Intelligent Tutoring Systems (ITS) can look back on a comparably long tradition (see e.g. Lelouche
1999). Starting from the observation that instruction works best if content is adapted to the learner’s
individual needs, different approaches have been developed over the years, following different trends
in instructional design (Martens 2004). Traditionally, “individual needs” means the learner’s knowledge
state in relation to a domain model. Like a good teacher, an ITS can determine the difficulty of a
candidate task for a certain student or help compensate individual weaknesses.
For structuring our robot factory tasks, we start out by applying an ITS modelling approach from
Knowledge Space Theory that Albert and Held (1999) call “systematical problem construction”. We
wish to teach a set of five steering techniques through five tasks:

T = {Seek, Flee, Pursuit, Arrive, Evade}

The teacher does not simply explain the algorithms, but hands out crafting tasks in the virtual world
that lead to well-defined solutions (with space for variations):

 Seek computes an impulse vector (in each time step) towards a target position in 3D space.
 Flee computes a Seek vector and reverses its orientation.
 Pursuit computes a Seek vector to an anticipated future position of the target.
 Arrive computes a Seek vector and decelerates as it comes closer.
 Evade computes a Flee vector from an anticipated future position (reversed Pursuit).

For each element in T, the teacher has recorded whether a student does or does not know the
corresponding algorithm. With the above composition of the tasks, it is possible to make assumptions
about prerequisites and learning paths: if the student does not know a, he/she will surely not know b,
as it includes a. In Knowledge Space Theory, this is the surmise relation:

(1) Seek Flee Pursuit Arrive
(2) Flee Evade
(3) Pursuit Evade

Any valid set of mastered tasks is a possible knowledge state, i.e. what one student/team can know.
Making use of the above relation, which is reflexive and transitive, one can determine the knowledge
space, i.e. the set of all possible knowledge states:

K = {{}, {Seek}, {Seek, Flee}, {Seek, Pursuit}, {Seek, Arrive}, {Seek, Flee, Pursuit}, {Seek, Flee,
Arrive}, {Seek, Pursuit, Arrive}, {Seek, Flee, Pursuit, Arrive}, {Seek, Flee, Pursuit, Evade}, {Seek, Flee,
Pursuit, Arrive, Evade}}

A teacher or ITS can now choose tasks for a student that would extend his/her knowledge state by
one item, e.g. Flee if they only have completed Seek so far.
As a potential improvement for designing tasks in constructivism-inspired, open-ended microworlds,
we propose a two-dimensional model that in addition to difficulty/complexity considers an appropriate
degree of instructional guidance versus self-regulated construction. After the completion of a task, a
teacher would assign either a task testing more complex knowledge, or a task of similar complexity,
but granting more explorative freedom. This generalises tasks to task classes (cf. Enfield 2012).
The idea behind our generalisation along an instruction-construction scale is based on the Cognitive
Apprenticeship approach (Collins, Brown and Newman 1987). It regards the student as an apprentice
whose master (the teacher) first demonstrates and coaches, doing parts of tasks him-/herself where
the student is still weak (scaffolding), then bit by bit withdraws as knowledge fortifies (fading). The
experienced student is ready for free experimentation and can explicitly communicate gained insights.
Following this, we decided to design each AI task in three versions: one for scaffolding (instruction),
one for fading (construction), and one intermediate. In Schulmeister’s (2003) taxonomy of task
interactivity, our tasks shift between levels 4 (“manipulate”) and 5 (“construct”). Manipulation would be
crafting as in an RPG or adventure game: connecting pre-programmed robot parts. Construction
would mean writing new bits of program code (within SL). At the intermediate level, students just read
and interpret code. The new task set reads:

T' = {Seek1, Seek2, Seek3, Flee1, Flee2, Flee3, Pursuit1, Pursuit2, Pursuit3, Arrive1, Arrive2, Arrive3,
Evade1, Evade2, Evade3}

The new surmise relation is (any i = 1, 2, 3):

(1') Seeki Flee1 Flee2 Flee3

 Pursuit1 Pursuit2 Pursuit3

 Arrive1 Arrive2 Arrive3

(2') Fleei Evade1 Evade2 Evade3

(3') Pursuiti Evade1 Evade2 Evade3

(4) Seek1 Seek2

(5) Seek2 Seek3

(6) Flee1 Flee2

(7) Flee2 Flee3

(8) Pursuit1 Pursuit2

(9) Pursuit2 Pursuit3

(10) Arrive1 Arrive2

(11) Arrive2 Arrive3

(12) Evade1 Evade2

(13) Evade2 Evade3

This structure enables the teacher to pave individual learning paths, forwards and backwards. He or
she would guide a student through a construction space. The students can discover the constructivist
environment at their own pace. If and how this works in practice was evaluated in a classroom study.

4. Evaluation
We tried out the task structure over four 90-minute sessions in a regular 12th grade Computer
Science course at a German secondary school. Twelve students aged 17–18 (11 male, 1 female)
participated. For two weeks, the first author became their teacher. After a brief lecture on game AI,
physics (impulse, force), vector algebra, SL and basic ideas of scripting, each two-person team
started with Seek1. Subsequent tasks were chosen by the teacher on the basis of the construction
space and an observation of the team’s performance: what would be a suitable next topic, and/or are
they ready for a higher degree of interactive freedom? The reason for forming teams was that the
school lab had exactly six PCs that met the requirements for SL. Each team received one avatar and
one room in the virtual building. Network speed or the SL server was lagging sometimes, which
caused some problems. A different issue was the distractive nature of the playful environment.
Besides selecting tasks and helping, the teacher often had to remind students to attend to their tasks
and worksheets instead of exploring SL (and sometimes damaging virtual objects).

4.1 Hypotheses
The main objective of the study was to evaluate our approach to balancing instruction versus
construction in virtual factories for Computer Science education: paving individual learning paths
through construction spaces. We hoped to find evidence for the following:

 By traversing construction spaces, students are always working on tasks that pose a medium
challenge.

 Working on such tasks is enjoyable.
 Students engage in discovery learning and form correct mental models.
 Later, when working on tasks allowing more freedom, students have creative ideas.

4.2 Method
Gaining access to students’ constructed mental models requires a qualitative data collection strategy.
Thinking-aloud protocols are typical in cognitive psychology research. But those work in a laboratory
setting, not in a classroom with lots of talking, collaborating people. Observation of the collaborative
dialogues would have been a possibility. But this would only collect communication in the instant of
problem solving, not the reflection part. In addition, any surveillance might be experienced as
intrusive. On the other hand, post-activity interviews or questionnaires would come in too late.
Students would not recall their thoughts.
A tool from ethnographic research captures thoughts as they happen, without intruding in a person's
natural activities: cultural probes (e.g. Crabtree 2003). A cultural probe can be a diary, a photo
camera, or similar artefacts that a participant uses to document his/her daily life. We thought that a
natural tool in a school student’s daily routine would be paper worksheets being filled in while working
on tasks. So, we created a pool of worksheets: one for assessing previous knowledge, a final one for
assessing the state after the course (including space for transfer, ideas, opinions), and one for each
task during the main phase: Figure 3.

Figure 3: Worksheet for Arrive1 (in German)

For each task, we recorded the perceived difficulty (left) on a scale from 1 (too easy) to 5 (too difficult;
3 is best) and the perceived joy (right) on a scale from 1 to 5 (5 is best). In the middle, there is the
task description, three boxes for documenting experimentation (hypotheses, tests, results), one larger
box for a narrative description of the topic (sometimes with a helping sketch), and a final box asking:
what was easy/difficult in this task. With each new task, we handed out a new worksheet. The
following section presents our analysis of collected data.

4.3 Results
Figure 4 displays the resulting learning paths for the six teams as dynamically assigned by the
teacher in response to performance or shown interest. For each team, the average perceived difficulty
and joy of doing a task is shown (“” denotes the standard deviation).

Figure 4: Resulting learning paths

Some things should be noted before interpreting the charts. Firstly, during the course, the task set
was extended by “Seek (Force)” because Team 4 had expressed an interest in pushing robots by a
constant force instead of instantaneous impulses. They had developed a vision of flying robots. This
extended the surmise relation:

(1'') Seeki Flee1 Flee2 Flee3

 Pursuit1 Pursuit2 Pursuit3

 Arrive1 Arrive2 Arrive3

 Force1 Force2 Force3

(14) Force1 Force2

(15) Force2 Force3

Other student ideas led to the modification of tasks. Three teams wanted a different Seek3: a robot
that followed exclusively their own avatar. Moreover, sometimes the teacher decided to assign the
same task twice as a repetition. Sometimes, students forgot to assign the difficulty and joy ratings, so
not all tasks are part of the average calculations. Finally, a mistake caused the assignment of Evade1

to Team 3 before they had completed a Pursuit. In accordance with the model, they did not solve this
task because it was too difficult.
Looking at the quantitative results, we can consider the evaluation of the construction space a
success. On average, perceived joy was > 4 for everyone except Team 6. The students in that team
did provide positive comments in their final worksheet, however, and gave the overall course a 4. The
students had fun. This can be attributed to the adaptation, but also to the playful nature of the course
and the difference from usual school routine. Perceived difficulty turned out to be around the ideal
average 3, with all standard deviations < 1 except for Team 2. This team awarded Seek3 a 5 and did
not make any progress from then. Seek2 had been a 2 for them, on the other hand. Team 3 awarded
the highest difficulties. As the end of their path shows, we were struggling to find appropriate tasks for
them. Team 5 awarded the lowest difficulties. This was a very competent team. Had we supported
them better (and not attended to students needing more help), they might have proceeded faster and
reached more difficult tasks. Team 4 was probably as competent as Team 5, but exhibited a more
chaotic working style, as can be seen in their learning path, which was largely determined by their
own interests. They were trying out ideas quicker than corresponding tasks could be handed out.
Our two-dimensional model seems to support such different learning styles. Whilst Teams 3 and 4
worked fast, Teams 1, 2, and 6 can be subsumed under a slower-working type. This is not necessarily
bad. In fact, these students may benefit from a dynamic degree of instruction towards construction the
most. Team 5 started in a similar fashion, but quickly reached the highest degree of interactive
freedom (coding). Actually, Team 6 had joined the course only in the second week. So, given more
time, they might have developed a learning path similar to that of Team 5. Rather than needing the
time like Teams 1 and 2, Teams 5 and 6 just seemed to want to do their work in an orderly manner. In
the end, four teams had successfully changed or written bits of LSL code. For Team 3, on the other
hand, it was good that we could move backwards from Flee3 (Session 2) to Flee2 (Session 3) again.
Moving on from Seek3 to Pursuit2 for Team 2 did not work, unfortunately. This was at the end of the
course and may have been a time issue, but we need to examine such transitions in the future. No
one came close to Evade3. This is okay, as every team did have their individual accomplishments,
and an adaptive lesson should always keep something in store for the unexpectedly clever. But we
did not see a solution to Pursuit3, either. Maybe, it could only be reached after Pursuit1 or Pursuit2.
It was difficult to code or cluster the rather scarce qualitative data. Our twelve participants had
produced less text than we had hoped for. Yet, we did observe trends. The students did understand
the easier AI algebra content, but could not always put their insights into words. Many narratives are
not precise. Some are incorrect. The students did understand their actions and what they meant in the
instant they did them (i.e., while they were in their working memory). But they could not reflect on
them afterwards. Did learning in a virtual world produce tacit knowledge? On the other hand, students
were able to continue their work from one session to the next, and in the final worksheet most could
transfer obtained knowledge to games they knew, some to new game ideas. Future studies should
support journal writing in a better way than predefining boxes and keywords.
Students had problems setting up discovery learning experiments (which is also one issue in de Jong
and van Joolingen 1998). For Seek1, some good entries document combinations: “Head 3, Foot 3,
Eye 3 fleeing robot; Head 1, Foot 1, Eye 1 following robot; Head 2, Foot 2, Eye 2 following
robot.” Experiments with code parameters (range, angle, speed, name etc.) worked in practice, but
were not documented well. More complicated experiments are scarce in the students’ notes. False
observations or conclusions appear, too. Discovery learning worked best when students were
following their own ideas, which, naturally, they seemed to understand better than our tasks. At
construction levels 2 and 3, students programmed robots that followed only their own avatar. They
compared Seek and Flee, so Seek1; Flee1; Seek2; Flee2 was actually a successful path for Team 3.
One team experimented with rotation in 3D, another one proposed a circle/sphere of protection
around a target so that Arrive could terminate (this is actually done in practice). Or they experimented
with gravity, as in the second pre-study. After a while, every team had come up with creative ideas.
All in all, the students did not set up and perform experiments in a formal way, but tried out ideas
quicker than they could think them through. They played! Maybe this is what game-based learning
does: inspire a flow of thoughts rather than careful deliberation? Or, the instructional part needs
improvement. In their final remarks, students did praise the value of being able to try things out (3
mentions in 12 final worksheets), the working style being close to practice (4), and the direct
application of knowledge or direct visual feedback (5). But there were also critical voices that wanted

more theory (2) or coding instructions (2). This had already been a lesson learnt in the first pre-study:
do attend to students who are there for the facts!
Cross-interpreting data and observations on the team level, the students most competent and capable
of transfer (Teams 4 and 5) were those who wanted more theory. Teams that struggled more, valued
practical work (1, 3), but also asked for more instructions on LSL (2). Adding more instruction (theory)
to game-based construction (practice) would thus benefit different sorts of learners, yet it should also
happen at different levels of complexity: introduction to coding versus theoretical concepts.

5. Conclusions and future research
In the application scenario presented, the construction space model did work as a tool for more fine-
grained adaptation. A typical learning path was refining the easiest task until the highest level of
construction, then continuing with the next task on that level (depth first). But for Team 3, relating
tasks to each other at more instructional levels worked better (breadth first). Two-dimensional
adaptation can address personal learning preferences in an inclusive way, such that competent
students can experiment more freely (depth) without surging ahead too far in terms of learning goals
(breadth).
Students had trouble with discovery and reflection. Discovery learning worked better when students
tried their own ideas – is inventing one’s own task a new highest degree of construction? The
educational scenario will lead to personal accomplishments, but to have everybody solve the tasks,
we have to support meta-cognitive thinking (planning, reflecting) and abstract Computer Science skills
(plugging together modules, adjusting parameters, interpreting diagrams). The teacher should ensure
that pursued new ideas remain related to the learning goals (here: AI) and can be shared with the rest
of the class, perhaps in a subsequent reflection session.
We are currently investigating further approaches to injecting instructions into a constructivist
environment: support for writing learning journals and automated suggestion of student actions
(Martens and Maciuszek 2013). We are also employing graph notations as more structured
representations of mental models.
Future research might study the relation of learning path patterns to cognitive learning styles. It may
be possible to define certain learner stereotypes from which the teacher can start adaptation. Finding
such patterns would require studies with larger groups.
When adaptation along construction spaces is better understood, it can be automated in an ITS that
chooses the next task automatically. Alternatively, the ITS might present annotated links from which
students can make informed selections. Research would have to invent and test algorithms for this. A
challenge for any automation, however, would be the support of creative ideas, i.e. new tasks
‘invented’ by students.

Acknowledgements
We thank Bert Schröder, teacher and headmaster at Erasmus-Gymnasium Rostock, as well as the
grade 12 Computer Science course 2012/13 (Christopher, Chung, Florian K., Florian R., Han, Jan,
Julia, Michael, Mikhail, Nico, Nikolai, Patrick). Heike Cantow established this contact. Maria Neumann
helped with the study design. Further thanks go out to the students of the pre-studies and to Christian
Schönfeldt for his co-ordination efforts.

References
Albert, D. and Held, T. (1999) “Component-based Knowledge Spaces in Problem Solving and
Inductive Reasoning”, in Knowledge Spaces, eds D. Albert and J. Lukas, Lawrence Erlbaum,
Mahwah, pp 15–40.
Collins, A., Brown, J.S. and Newman, S.E. (1987) Cognitive Apprenticeship: Teaching the Craft of
Reading, Writing, and Mathematics. Technical Report No. 403. Urbana-Champaign: Center for the
Study of Reading, University of Illinois.
Crabtree, A. (2003) Designing Collaborative Systems, Springer, London.
Enfield, J. (2012) Designing an Educational Game with Ten Steps to Complex Learning. PhD thesis,
Indiana University.
de Jong, T. and van Joolingen, W.R. (1998) “Scientific Discovery Learning with Computer Simulations
of Conceptual Domains”, Review of Educational Research, Vol. 68, No. 2, pp 179–201.
Lelouche, R. (1999) “Intelligent Tutoring Systems from birth to now”, Künstliche Intelligenz, Vol. 13,
No. 4, pp 5–11.
Maciuszek, D., Martens, A., Lucke, U., Zender, R. and Keil, T. (2013) “Second Life as a Virtual Lab
Environment”, in Synthetic Worlds, eds A. Hebbel-Seeger, T. Reiners & D. Schäffer, Springer, New
York, pp 165–202.

Martens, A. (2004) Ein Tutoring-Prozess-Modell für fallbasierte Intelligente Tutoring-Systeme. PhD
thesis, University of Rostock.
Martens, A. and Maciuszek, D. (2013) “Balancing Instruction and Construction in Virtual World
Learning”, in Serious Games and Virtual Worlds in Education, Professional Development, and
Healthcare, eds K. Bredl & W. Bösche, IGI Global, Hershey, pp 15–40.
Reynolds, C.W. (1999) “Steering Behaviors for Autonomous Characters”, in Proceedings of Game
Developers Conference 1999. San Jose, 15–19 March 1999. Miller Freeman Game Group, San
Francisco, pp 763–782.
Rieber, L.R. (1992) “Computer-based Microworlds: A Bridge Between Constructivism and Direct
Instruction”, Educational Technology Research and Development, Vol. 40, No. 1, pp 93–106.
Schulmeister, R. (2003) “Taxonomy of Multimedia Component Interactivity: A Contribution to the
Current Metadata Debate.”, Studies in Communication Sciences, Vol. 3, No. 3, pp 61–80.
Sweetser, P. (2005) An Emergent Approach to Game Design. PhD thesis, University of Queensland.

